

Welcome to Linux Automation GmbH lxa-iobus-server’s documentation!

This packages provides a daemon which interfaces IOBus-devices from Linux Automation GmbH
with test-automation tools like labgrid [https://github.com/labgrid-project/labgrid].
IOBus is a CANopen-inspired communications protocol on top of CAN.

This packages provides the following features:

	lxa-iobus-server: This is the central daemon that manages the nodes on the bus.
It provides a (human-readable) web interface and a REST API for remote control of the nodes.
It also updates the firmware running on the devices on the bus.

	The most recent firmware for all available IOBus devices.

If you want to get in touch with us feel free to do so:

	IRC channel #lxa on libera.chat
(bridged to the Matrix channel
#lxa:matrix.org [https://app.element.io/#/room/#lxa:matrix.org])

	If our Troubleshooting guide doesn’t solve your problem or if you found
a bug feel free to open an
issue on github [https://github.com/linux-automation/lxa-iobus/issues].

	You can send us an email to info@linux-automation.com.

Contents:

	Getting Started
	System requirements

	Hardware Preparations

	IOBus Server Quickstart

	Installation

	Usage

	System Architecture
	Network Layers

	CAN Basics
	CAN-Bus Introduction

	Software and Firmware Upgrades
	Upgrading the lxa-iobus-server

	Bundled Firmware Upgrades

	Firmware Upgrades using the danger-zone button

	Using the Web-Interface

	Using the REST-API

	Troubleshooting
	Bitrate-Intolerant CAN Bus

	Contributing
	Developers Certificate of Origin

	List of Abbreviations

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

This chapter describes the steps to set up the lxa-iobus-server on your
system.
Since the server interfaces with real hardware we will first set up your
CAN bus and afterwards set up the server itself.

System requirements

The lxa-iobus-server has been developed to work on a modern Linux-based distribution.
Additional to this the following requirements need to be meet to run the lxa-iobus-server:

	Python 3.7 or later

	on Debian: python3-virtualenv

	SocketCAN (The built-in CAN layer in recent Linux Kernels)

	SocketCAN compatible CAN interface

	At least one IOBus device

	git

	make for easy setup of the lxa-iobus-server

	optional: systemd to setup a service for lxa-iobus-server

	optional: systemd >= 239 to bring up your CAN-device on boot

Hardware Preparations

For the lxa-iobus-server to work you need to set up your CAN bus correctly.
This chapter shows you how to set up your CAN bus.
If you are not familiar with CAN please refer to the chapter CAN-Bus Introduction
for some basics about CAN.

The following figure shows a minimum CAN-Bus Setup for
a single LXA IOBus device:

 Power Supply ╭───────────────────────╮
 ╭───────╮ │ LXA IOBus device │
 │ 12V │ ├───────────────────────┤
 │ 500mA ┝╾──╮ │ │
 │ PSU │ │ │ │
 ╰───────╯ │ │ │
 │ │ │
 │ │ │
 │ │ │
 │ │ │
 │ │ │
 │ ╭───╮ │ │
 │ │120│ │ │
 │ │Ohm│ │╭─────────╮ │
 ╭───────╮ │ ╰─┰─╯ ││ │ │
 │ CAN │ │ │ ││ IOBus │ │
 │Adapter┝╾──┶━━━━━━━━━━━━┷━━━━┿┥ Control │ │
 │ │ CAN & 12V ││ │ │
 ╰───────╯ over D-Sub9 │╰─────────╯ │
 Test Server ╰───────────────────────╯

CAN structure for a single LXA IOBus device on a short bus.
The 120Ω termination resistor is connected between CAN_H and CAN_L
and (for short busses) may be placed anywhere on the bus.

In this example the LXA IOBus device and the CAN adapter
are the only devices on the CAN bus.
The Test-Server is the host running the control application and is connected
to the CAN bus.

Power for the LXA IOBus device is provided by a 12V DC power supply.
The power supply is connected to the power pins on the CAN bus.

A single 120Ω termination resistor, connecting the two CAN signal lines,
is sufficient when the bus length is kept short.

The following chapters give more information on how to build this minimum
setup.

Pinout

The following figure shows the common pinout of the D-Sub 9 connector on the
LXA IOBus:

[image: Numbered DE9 female Diagram]
Pinout of the D-Sub 9 Pin connector looking from the outside onto
the connector.
(Public Domain, from: Wikimedia [https://commons.wikimedia.org/wiki/File:Numbered_DE9_female_Diagram.svg])

The connector uses the standard pinout for CAN on D-Sub 9 connectors,
that is defined in the CANopen standard CiA-303-1 and is used
throughout the automotive industry.
The following table shows the common pins used on the LXA IOBus:

D-Sub 9 CAN Pinout

	Pin Number

	Name

	Internal Function

	1

	‐

	Not connected

	2

	CAN_L

	CAN bus (negative)

	3

	CAN_GND

	Connected to system GND

	4

	‐

	Not connected

	5

	CAN_SHIELD

	Can be connected to system GND

	6

	POWER_GND

	Connected to system GND

	7

	CAN_H

	CAN bus (positive)

	8

	‐

	Not connected

	9

	+12V

	Power Supply

Pins marked as not connected are not part of the common LXA IOBus specification.

Note

Check the manual of your LXA IOBus products for their safe working voltage
ranges and absolute maximum values on these pins.

Note

The LXA IOBus uses a fixed bitrate of 100 kBits/s for communication.
Other bus nodes should allow for at least ±2% bitrate error.
See Bitrate-Intolerant CAN Bus for an example
of how this may cause issues with some CAN-interfaces and how to fix these
issues.

Termination resistor and bus topology

Important

Especially in installations with multiple meters of cabling, a clear
topology and termination are required for highly reliability.

A CAN bus should be designed as a single line with short stubs
connecting the devices to the bus.

The CAN bus needs to be terminated properly.
This is usually done using 120Ω resistors between CAN_H and CAN_L
at both ends of the line, close to the last devices on the bus.

Experience has shown that very short buses (eg. shorter than 0.5m)
can be realized with a single termination resistor on the bus and without
a strict line topology.

Cabling

For longer distances an unshielded twisted-pair (UTP) cable with 120Ω
differential impedance should be used for the CAN bus.
For GND and power supply use wires with a sufficient cross section to keep
the power supply and CAN bus common mode voltage in the allowed ranges.

For short busses flat ribbon cables present a cheap and easy-to-install
alternative to UTP cabling.
Plugs and sockets are available from many manufacturers, for example
L17DEFRA09P and L17DEFRA09S from Amphenol.

IOBus Server Quickstart

We assume that the linux network interface connected to your CAN bus is can0.
If your CAN bus has a different name please skip to the next chapter.
Make sure you have at least one other CAN device on your bus
(e.g. an IOBus device) and that your bus has sufficient termination resistors.
If you connect an IOBus device to a currently unmanaged bus
(a CAN bus without a running lxa-iobus-server)
the network LED on the IOBus device will blink until the node has been initialized.

First: Setup your SocketCAN interface can0:

$ sudo ip l set can0 down # Deactivate the interface so that the bitrate can be changed
$ sudo ip link set can0 type can bitrate 100000
$ sudo ip l set can0 up # Activate the interface with new bitrate

The next step is to download the server software by cloning this repository:

$ git clone https://github.com/linux-automation/lxa-iobus.git
Cloning into 'lxa-iobus'...
remote: Enumerating objects: 476, done.
remote: Counting objects: 100% (476/476), done.
remote: Compressing objects: 100% (227/227), done.
remote: Total 476 (delta 257), reused 448 (delta 229), pack-reused 0
Receiving objects: 100% (476/476), 1.04 MiB | 2.48 MiB/s, done.
Resolving deltas: 100% (257/257), done.

Now you are able to call make server which will create a python venv inside
the directory and start a server that binds to http://localhost:8080/.

$ cd lxa-iobus/
$ make server
rm -rf env && \
python3.7 -m venv env && \
. env/bin/activate && \
pip install -e .[full] && \
date > env/.created
Obtaining file:///home/chris/tmp/lxa-iobus
[...]
Successfully installed aenum-2.2.4 aiohttp-3.5.4 aiohttp-json-rpc-0.12.1 async-timeout-3.0.1
attrs-20.2.0 backcall-0.2.0 canopen-1.1.0 chardet-3.0.4 decorator-4.4.2 idna-2.10
ipython-6.5.0 ipython-genutils-0.2.0 jedi-0.17.2 lxa-iobus multidict-4.7.6 parso-0.7.1
pexpect-4.8.0 pickleshare-0.7.5 prompt-toolkit-1.0.18 ptyprocess-0.6.0 pygments-2.7.2
python-can-3.3.4 simplegeneric-0.8.1 six-1.15.0 traitlets-5.0.5 typing-extensions-3.7.4.3
wcwidth-0.2.5 wrapt-1.12.1 yarl-1.6.2
. env/bin/activate && \
lxa-iobus-server can0
starting server on http://localhost:8080/

After this step the lxa-iobus-server will start to scan the bus for connected
IOBus-compatible nodes.
Depending on the number of nodes this can take up to 30 seconds.
Observe the status of the network LED on your iobus compatible node.
Once the node has been initialized by the server the LED stops blinking.

Now navigate your web browser to http://localhost:8080/.
Your node should be listed under nodes.
Your lxa-iobus-server is now ready for use.

If you want the server to be started at system startup take a look into the
installation section.

Installation

The permanent installation of the lxa-iobus-server consists of three parts:

	Clone the repository and create a python venv with the
installation.

	Bring up the SocketCAN-device at system start.

	Setup the lxa-iobus-server and make it start at system start.

Create a python venv

Clone this repository:

$ git clone https://github.com/linux-automation/lxa-iobus.git
Cloning into 'lxa-iobus'...
remote: Enumerating objects: 476, done.
remote: Counting objects: 100% (476/476), done.
remote: Compressing objects: 100% (227/227), done.
remote: Total 476 (delta 257), reused 448 (delta 229), pack-reused 0
Receiving objects: 100% (476/476), 1.04 MiB | 2.48 MiB/s, done.
Resolving deltas: 100% (257/257), done.
$ cd lxa-iobus/

Create a venv and install lxa-iobus-server:

$ make env
rm -rf env && \
python3 -m venv env && \
. env/bin/activate && \
pip install -e .[full] && \
date > env/.created
Obtaining file:///home/chris/work/Projects/github/lxa-iobus
[...]
Successfully installed [...]

You can now run the lxa-iobus-server located in
./env/bin/lxa-ibus-server.

Setup SocketCAN device with systemd-networkd

In this step systemd-networkd is used to set up the SocketCAN device at
system startup.
If you are not using systemd-networkd skip to the next chapter.

This installation method requires you to have systemd with a version of at
least 239 on your system and a SocketCAN device must be available.

You can check the status using:

$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
[...]
185: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP mode DEFAULT group default qlen 10
 link/can

In this example the SocketCAN device is can0.

To setup the interface using systemd-networkd copy the rules
80_can0-iobus.link and 80_can0-iobus.network
from ./contrib/systemd/ to /etc/systemd/network/.
Make sure to update the [Match] sections in both files and the [Link]
section in the .link file to match the name of your SocketCAN device.

These files will do the following:

	Use the SocketCAN device can0

	Rename it to can0-iobus. Especially on
systems with multiple interfaces this makes it a lot easier to identify
the interface used for the lxa-iobus-server.

	Set the bitrate to 100 kbit/s.

	Bring the interface up.

To apply this changes restart systemd-networkd using
systemctl restart systemd-networkd.
Afterwards make sure your device has been renamed and is up using ip link.

Setup SocketCAN device manually

If you are using another way of setting up your network you may skip this
step and make sure you meet the following requirements instead:

	Set the bitrate to 100 kbit/s

	Bring the interface up

	Optionally: Rename the interface with the suffix -iobus. Especially on
systems with multiple interfaces this makes it a lot easier to identify
the interface used for the lxa-iobus-server.

Setup lxa-iobus-server

In this chapter systemd will be used to start the lxa-iobus-server.

To setup a systemd-service use the example .service -unit provided
in ./contrib/systemd/lxa-iobus.service.
To install the service copy this file to /etc/systemd/system/.

Make sure to set the correct SocketCAN interface
and path to the lxa-iobus-server-executeable in the service file.
Make sure you have at least one other CAN device on your bus an that your
bus is terminated.

Afterwards the service can be started using systemctl start lxa-iobus.service.
If no errors are shown in systemctl status lxa-iobus.service the web interface
should be available on http://localhost:8080.

Usage

Once started the server should start enumerating devices connected to the bus.
Visit the IOBus Server web interface at http://localhost:8080/ for a list of detected IOBus devices:

[image: IOBus Server Web Interface - List of nodes]

List of nodes in the IOBus Server web interface

Click on a node for detailed information about this node and
the options to toggle the outputs.

System Architecture

The lxa-iobus-server is a gateway between a lab automation
software (e.g. labrid) and
the actual LXA IOBus devices connected to the bus.

This chapter gives introduces the architecture used to
in the LXA IOBus system.

Network Layers

The following figure shows the structure of the LXA IOBus system:

 LXA IOBus Server
╭───────────┬───────────╮
│ REST- │ HTML/Web- │
│ Interface │ Interface │
│ │ │
├───────────┴───────────┤ IOBus Node 1 IOBus Node 2
│ │ ╭───────────────────────╮ ╭───────────────────────╮
│ Transport and Control │ │ Node-specific │ │ Node-specific │
│ │ │ electrical Interface │ │ electrical Interface │
╰───────────┬───────────╯ │ │ │ │
╭───────────┴───────────╮ ├───────────────────────┤ ├───────────────────────┤
│ │ │ │ │ │
│ Linux SocketCAN │ │ Transport and Control │ │ Transport and Control │
│ │ │ │ │ │
╰───────────┬───────────╯ ╰───────────┬───────────╯ ╰───────────┬───────────╯
 │ │ │
 │ │ │
 ╰──────────────────────────────┴─────────────────────────────╯
 CAN-Bus with Power supply

	REST-Interface:
Using this communication interface external software is able to interact with
the nodes connected to the IOBus.

	Web-Interface:
This interface provides the information available on the REST-Interface in a
human-readable form.

	Transport and Control:
This part implements the CANopen-inspired protocol and keeps track of the
current state of the bus and connected devices.

	Linux SocketCAN:
The LXA IOBus Server uses SocketCAN [https://en.wikipedia.org/wiki/SocketCAN]
to interfact with the CAN-bus.

	Node-specific electrical interface:
Every LXA IOBus node has an application-specific specialiced electiral interface
that is designed to perform different automation tasks.

	CAN-Bus:
This is the actual electrical interface that connects server and nodes.
This is the same CAN bus inteface you may know from many automotive applications.

CAN Basics

CAN and CANopen are, when compared to modern Ethernet and IP,
quite simple protcols.
Most software developers are however more familiar with Ethernet
and IP and less with CAN and CANopen.

This chapter tries to give a short introduction into CAN and CANopen and
tries to focus on topics that are relevant for the operation of the
LXA IOBus system.

CAN-Bus Introduction

The CAN bus was developed to connect multiple small computers
in a reliable way.
A very common scenario is to connect multiple control units inside
a road vehicle:
There is a lot of noise and possible bad connectors on the bus
but CAN must still be able to carry information from one control
unit to the others.

CAN is a low-speed and low-bandwith bus:
A single message can only carry up to 8 bytes of payload.
The maximum symbol-rate on the bus is 1 M/s.

Messages not Addresses

In common computer networks (e.g. Ethernet) every node has a static address
(e.g. MAC-address).
Information in such network is usually sent from one address to another
address on the same network segment, e.g. each message contains one source
address and one destination address.
(There are exception but let’s leave those aside here.)

On a CAN bus messages are published to a message-id,
where a single message-id can be consumed by one or many nodes on the bus.
It is even possible that multiple nodes on the bus publish information
to the same message-id!
In modern terms: A CAN bus follows the publish / subscribe paradigm where
the message-ids are the topics.
(Beware that there is no central broker here. Subscription is done using
ingress filters on the receiving nodes.)
This means CAN messages only contain a destination address and no
source address and the destination address may be shared between multiple nodes.

CAN itself only defines the length of a message-id
(11 or 29 bit depending on the addressing scheme used)
but not how these message-id should be used.
In a vehicle all message-ids are pre-allocated by the manufacturer:
For every message-id a structure defining the contents of the payload
is defined and shared between all control units.

In the case of the LXA IOBus the meaning of the message-ids
and the payload is defined by a CANopen-inspired protocol.

Reliable transmission

CAN makes a good amount of effort to make sure all nodes on the
bus share a common understanding of the information transmitted:
Every message contains a checksum to make sure no bit-errors
occour on the bus.

Additionally all nodes on the bus do a handshake for every message
that ensures that either all or no node received the message.

To archive this every receiving node on the bus sends an
acknowledge-flag to the bus once the complete frame has been
received and the checksum is correct.

If the received checksum is not correct or another receive-error
occurs an error-message is send to the bus.
If an error message is received the current message is discarded
in the MAC - before forwarding it to the higher level.

Let’s take a look at the following scenarios:

	No other node on the bus:
The node sends a message on the bus.
Since there is no other node on the bus the sender will
not receive an ACK.
The sending node will assume that the message has not
been received by any node.
This can happen if there are only two nodes on a bus
and one is not powered or disconnected due to a faulty
conenction.

	Two other nodes on the bus and the checksum is OK:
Both receiving nodes send an acknowlege after the end
of the message.
All three nodes assume that every other node has
received the message correctly.
This message is delivered to the next higher level.

	Two other nodes on the bus and one receives an invalid
checksum:
In this case the node receiving the invalid checksum
will generate en error-frame instead of the acknowledge.
Both other nodes will discard the message.
The sending node will probably re-transmit the message.

Software and Firmware Upgrades

Upgrading the lxa-iobus-server

Upgrading the LXA iobus-server is done by installing a new
version of the Python package.

Before installing a new version of the server stop
the currently running lxa-iobus-server.
If you are using the provided systemd-service run:

$ sudo systemctl stop lxa-iobus.service

Afterwards you can build a new env:

$ cd /path/to/the/lxa-iobus/repository
$ git pull
$ make clean
$ make env

Now you can start your service again:

$ sudo systemctl start lxa-iobus.service

Bundled Firmware Upgrades

The lxa-iobus-server software comes bundled with the latest firmware binaries
for the IOBus devices.
The availability of new firmware upgrades for devices
is indicated in the Web-Interface by a red Update text in the node list:

[image: IOBus Server Web Interface - Upgrade notification]

List of nodes. Devices “00003.00020” has a pending firmware upgrade.

A firmware upgrade is performed by selecting the corresponding
entry in the node list
and clicking the Update to … button at the top:

[image: IOBus Server Web Interface - Update button]

Pressing the “Update to …” button initiates a firmware upgrade.

Clicking the button takes you to the “ISP” tab of the
web interface where a log of the flashing progress is shown:

[image: IOBus Server Web Interface - Firmware upgrade log]

A successful firmware flashing process terminates with the log message
“Flashing done”.

Once the flashing is compled you can return to the node information
by selecting the “Nodes” tab at the top.

Firmware Upgrades using the danger-zone button

The lxa-iobus-server allows you to flash arbitrary files into the firmware
section of any node.
As it is generally a bad idea to flash arbitrary firmware into a device this
feature is disabled by default.

Warning

With this option you can damage your IOBus devices.

If you intend to use this feature (e.g. to flash a beta-firmware or if you want
to deploy your own firmware) you have to use the --allow-custom-firmware
switch on the command line, e.g.:

$ lxa-iobus-server --allow-custom-firmware --firmware-directory firmware/ can0

The additional command line switch --firmware directory <dir> allows to
specify the directory in which uploaded firmware files are stored.
If you omit this switch the default directory firmware/ in the project root
is used.

With the --allow-custom-firmware switch enabled two new features are available:

	The Firmware Files view now contains the option to upload and delete
custom firmware files.

	Every node view now has the option to select an arbitrary file to flash.

To flash an arbitrary file first upload the binary using the Firmware Files
view:

[image: IOBus Server Web Interface - Firmware Files view]

The Firmware Files view. The files listed under Upstream Firmware files
have been shipped with the server.
The files listed under Local Firmware Files have been uploaded by the user.

New files can be uploaded using the Browse and Upload -buttons.
Here a file called candleLight_fw.bin has been uploaded by the user.

Afterwards this file can be flashed to an arbitrary node in the Nodes view:

[image: IOBus Server Web Interface - Node view with custom firmware enabled]

The section Flash for this nodes lists all firmware files available.

Select the correct file and start the transfer using the Flash -button.

Using the Web-Interface

Note

Make sure you have installed the control software as described in
Getting Started.

Once started the server should start enumerating devices connected
to the bus.
Visit the IOBus Server web interface at
http://localhost:8080/
for a list of detected IOBus devices:

[image: IOBus Server web interface - list of nodes]

List of nodes in the IOBus server web interface

More options to control a particular node are available
by clicking on a line in the list:

[image: IOBus server web interface - node controls]

The IOBus server node control interface

Depending on the type of node different inputs and
output are available.
Read the manual for the specific node for more
information on specific options.

The following fiels are available for every node:

	Name: The logical name for this device.
This name is used to identify this node on the REST interface.

	Address: CANopen LSS address for this device.

	Serial: Serial number of the device.

	ADC VIN: This ADC channel shows the current supply voltage
on the IOBus.
This voltage should be between 9 and 13V.

	Locator: Toggling the Locator LED, that can be used to find a
particular device in a lab, is done by clicking the
Locator button in the interface.
The Locator indicator can also be used in the
opposite direction, as pushing the locator button
on the Ethernet-Mux also toggles the state
of the on-board LED and the one shown in the web interface:

[image: IOBus Server Web Interface - Active Locator]

List of nodes. Device “00005.00009” has an active Locator.

Using the REST-API

The actions available through the web interface can alternatively
be performed programmatically using the REST API provided by the
server:

Get a list of available nodes:
$ curl http://localhost:8080/nodes/
{"code": 0, "error_message": "", "result": ["Ethernet-Mux-00003.00020"]}

Get a list of pins on a device:
$ curl http://localhost:8080/nodes/Ethernet-Mux-00003.00020/pins/
{"code": 0, "error_message": "", "result": ["SW", "SW_IN", "SW_EXT", "AIN0", "VIN"]}

Get the current status of a pin:
$ curl http://localhost:8080/nodes/Ethernet-Mux-00003.00020/pins/SW/
{"code": 0, "error_message": "", "result": 0}

Set the status of a pin:
$ curl -d "value=0" -X POST http://localhost:8080/nodes/Ethernet-Mux-00003.00020/pins/SW/
{"code": 0, "error_message": "", "result": null}

Toggle the Locator LED:
$ curl -X POST http://localhost:8080/nodes/Ethernet-Mux-00003.00020/toggle-locator/
{"code": 0, "error_message": "", "result": null}

Troubleshooting

This section lists common problems and possible solutions.
If you experience other problems or would like to add a solution for a problem
feel free to open an issue in our
Github project [https://github.com/linux-automation/lxa-iobus/issues]
or send us an email to info@linux-automation.com.

For assistance you can also join our IRC channel #lxa on libera.chat
(bridged to the Matrix channel
#lxa:matrix.org [https://app.element.io/#/room/#lxa:matrix.org]).

Bitrate-Intolerant CAN Bus

Problem: The host-side CAN-interface sends an error-frame for
every CAN packet sent by the Ethernet-Mux.

The CAN-Bus protocol is designed to allow bitrate offsets of a few percent
between bus nodes. This is especially relevant when a bus contains nodes without
precise crystal-based clock sources.
Synchronization is performed on the receiving side of a CAN-frame by
monitoring the actual and expected timing of bit transitions seen on the bus,
and adjusting the bit-sampling of subsequent bits accordingly.

The generation of CAN-timings is based on a base clock, that is sub-divided
using counters, to determine the sample points for reception and the
signal transition points for sending. These counter timings make use of units of time called
time quanta tq, on Linux these time quanta are given in nanoseconds.

One parameter that is specified in terms of time quanta is the synchronization jump
width (sjw), a parameter determining the maximum amount of bitrate synchronization
performed during reception of a CAN-frame.
Currently SocketCAN initializes every device with a synchronization jump width (sjw)
of 1 time quantum.

As the length of a time quantum tq varies widely between different CAN-controllers
this results in maximum amount of bitrate-synchronization performed by default also
varying widely between CAN-controllers. On some CAN-controllers the amount of synchronization
allowed by the default setup is not sufficient to use LXA IOBus devices, leading to
frames being rejected by the CAN-controller.

Solution: Use a sjw relative the other bit-timings instead of a fixed value of 1.

LXA IOBus devices are tested at a sjw of 5% of one bit-time.
To determine the current bit-timings the can0 interface should first
be configured to the desired bitrate of 100 kbit/s, e.g. by using systemd-networkd.
The resulting bit timings are calculated automatically by the Linux kernel
and can then be displayed using the ip command:

$ ip --details link show can0
5: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP mode DEFAULT group default qlen 10
 link/can promiscuity 0 minmtu 0 maxmtu 0
 can state ERROR-PASSIVE (berr-counter tx 128 rx 0) restart-ms 100
 bitrate 100000 sample-point 0.875
 tq 50 prop-seg 87 phase-seg1 87 phase-seg2 25 sjw 1
 peak_canfd: tseg1 1..256 tseg2 1..128 sjw 1..128 brp 1..1024 brp-inc 1
 peak_canfd: dtseg1 1..32 dtseg2 1..16 dsjw 1..16 dbrp 1..1024 dbrp-inc 1
 clock 80000000 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535

Shown in line 6 are the timing-parameters tq, prop-seg, phase-seg1, phase-seg2
and sjw. One bit-time consists of 1 + prop-seg + phase-seg1 + phase-seg2 time quanta.
The sjw should thus be adjusted to a value of sjw = ⌊0.05 * (1 + prop-seg + phase-seg1 + phase-seg2)⌋ = 10.

The interface can be re-configured accordingly using the command:

$ ip link set can0 type can tq 50 prop-seg 87 phase-seg1 87 phase-seg2 25 sjw 10

Note

All other values but sjw are copied from the status output above.

Contributing

Thank you for thinking about contributing to LXA IOBus Server!

Changes should be submitted via a
Github pull request [https://github.com/linux-automation/lxa-iobus/pulls].

Developers Certificate of Origin

This project uses the Developer’s Certificate of Origin 1.1 [https://developercertificate.org/] with the same process [https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin]
as used for the Linux kernel:

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

	The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

	The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

	I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

Then you just add a line (using git commit -s) saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions).

List of Abbreviations

	API
	Application Programming Interface.
An interface between software components.

	ISP
	In System Programmer
A tool that allows uploading new firmware to a device without requiring
disassembly or other invasive actions.

	LSS
	Layer Setting Services.
A CANopen protocol that allows the configuration of individual node ids
and communication bitrates.

	REST
	Representational State Transfer.
A paradigm for the design of APIs. The lxa-iobus-server provides
a REST API on top of HTTP.

Index

 A
 | I
 | L
 | R

A

 	
 	API

I

 	
 	ISP

L

 	
 	LSS

R

 	
 	REST

 _images/product-firmware-upgrade-button.png
LXA I0Bus Server

Nodes ISP Firmware Files

Back ate to ethmux-S01.bin

Name Ethernet-Mux-00003.00020
Address 00000507.00000001.00000004.00000014
Serial 00003.00020

Driver EthernetMuxDriver

Vendor Linux Automation GmbH

Device Name ethmux-501 Ethernet Mux

Vardware ethmux-S01-R04

Software ethmux-501 0.3.0 (e679059 @ 2021-04-09 12:35:20) with rustc 1.51.0 (2fd73fabe
Version 2021-03-23)

_images/product-firmware-upgrade-custom-fw.png
LXA I0Bus Server

Nodes ISP Firmware Files

Upstream Firmware Files
ptxtac-503_CAN_GPIO.bin
Ixatac_can_io-t01.bin

ethmux-S01.bin

Local Firmware Files

candleLight_fw.bin

Upload Firmware File

| Browse... | No file selected.

Upload

_images/product-firmware-upgrade-node-custom-fw.png
LXA I0Bus Server

Nodes ISP Firmware Files

Back

Name Ethernet-Mux-00003.00023

Address 00000507.00000001.00000004.00000017
Serial 00003.00023

Driver EthernetMuxDriver

Vendor Linux Automation GmbH

Device Name ethmux-S01 Ethernet Mux

Hardware
Version

Software ethmux-501 0.3.0 (e679059 @ 2021-04-09 12:35:20) with rustc 1.51.0 (2fd73fabe
Version 2021-03-23)

ethmux-S01-R04

Locator
Locator
Outputs
sw
Inputs
SWIN 0
SW_EXT 0

ADCs

AINO 0.000
VIN 12.189

Flash
Be careful! This dialog lets you flash whatever you want, without checking if the given file is valid or

not.

You can brick your device here.
| upstream/ptxtac-503_CAN_GPIO.bin v

_images/product-operation-server-ethmux.png
LXA I0Bus Server

Nodes ISP re Files
Back
Name Ethernet-Mux-00003.00020
Address 00000507.00000001.00000004.00000014
Serial 00003.00020
Driver EthernetMuxDriver
Vendor Linux Automation GmbH
Device Name ethmux-501 Ethernet Mux
Hardware
Version ethmux-501-R04.
Software ethmux-501 0.3.0 (€679059 @ 2021-04-09 12:35:20) with rustc 1.51.0 (2fd73fabe
Version 2021-03-23)
Locator
Locator
Outputs
Inputs
SWIN 0
SW_EXT 0
ADCs
AINO 3.207

VIN 12.469

_images/product-firmware-upgrade-isp.png
LXA I0Bus Server

Nodes ISP

ISP Console

2021-04-19
2021-04-19
2021-04-19
2021-04-19
2021-04-19
2021-04-19

.011849:
.014375:
.019411:
.037430:
.038296:
.219033:

Invoking isp
Start flashing
Writing section flash

Write 26180 in 16.017868280410767 :

Reseting node
Flashing done

1634.4247275411253 Bytes/sec

_images/product-firmware-upgrade-list.png
LXA I0Bus Server

re Files

Nodes ISP Firmw

Name Address Driver

Ethernet-Mux-00003.00020 Update 00000507.00000001.00000004.00000014 EthernetMuxDriver

_images/product-operation-server-locator.png
LXA I0Bus Server

Nodes ISP Firmware Files

Name Address Driver
4DO0-3DI-3A1-00005.00001 00000507.00000002.00000003.00000001 lobus4Do3Di3AiDriver

4D0-3DI-3AI-00005.00009 00000507.00000002.00000003.00000009 lobus4Do3Di3AiDriver

_images/product-operation-server-nodes.png
LXA I0Bus Server

re Files

Nodes ISP Firmw

Name Address Driver

Ethernet-Mux-00003.00020 00000507.00000001.00000004.00000014 EthernetMuxDriver

nav.xhtml

 Table of Contents

 		
 Welcome to Linux Automation GmbH lxa-iobus-server’s documentation!

 		
 Getting Started

 		
 System requirements

 		
 Hardware Preparations

 		
 Pinout

 		
 Termination resistor and bus topology

 		
 Cabling

 		
 IOBus Server Quickstart

 		
 Installation

 		
 Create a python venv

 		
 Setup SocketCAN device with systemd-networkd

 		
 Setup SocketCAN device manually

 		
 Setup lxa-iobus-server

 		
 Usage

 		
 System Architecture

 		
 Network Layers

 		
 CAN Basics

 		
 CAN-Bus Introduction

 		
 Messages not Addresses

 		
 Reliable transmission

 		
 Software and Firmware Upgrades

 		
 Upgrading the lxa-iobus-server

 		
 Bundled Firmware Upgrades

 		
 Firmware Upgrades using the danger-zone button

 		
 Using the Web-Interface

 		
 Using the REST-API

 		
 Troubleshooting

 		
 Bitrate-Intolerant CAN Bus

 		
 Contributing

 		
 Developers Certificate of Origin

 		
 List of Abbreviations

_static/minus.png

_static/plus.png

_static/file.png

